© Centre for Research and Innovation
www.crijournals.org
DOI: https://doi.org/10.70112/ajeat-2024.14.1.4296

Asian Journal of Engineering and Applied Technology
ISSN: 2249-068X (P); 3049-1959 (E)
Vol.14 No.1, 2025, pp.24-32

Directory Brute-Forcing and Artifact Exposure: Qualitative insight into
Underestimated Threats to Web Application Security

Aminu Muhammad Auwal

Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria
E-mail: i.elameenu@gmail.com
(Received 27 February 2025; Revised 27 March 2025; Accepted 10 April 2025; Available online 17 April 2025)

Abstract- Web applications increasingly face threats not only
from sophisticated exploits but also from basic oversights such
as misconfigured directories and exposed development artifacts.
This study explores the awareness and mitigation strategies of
developers, DevOps engineers, and system administrators
regarding vulnerabilities arising from directory brute-forcing
and the exposure of sensitive files, including. git/,. env, and
.bash_history. Using a qualitative approach, data were collected
through semi-structured interviews with 11 IT professionals
across different sectors in Nigeria, where the rise of small- and
medium-scale web deployments has amplified security risks.
The findings reveal a concerning inconsistency in mitigation
strategies, even among technically proficient participants.
While some employ directory restrictions and CI/CD security
checks, others rely on ad hoc, manual practices. Most
participants were aware of the risks posed by exposed artifacts;
however, only a few incorporated automated tools or
vulnerability scanners into their deployment pipelines. Notably,
a gap persists between theoretical knowledge and operational
execution, leaving systems vulnerable to reconnaissance and
chained attacks. This study highlights the need for stronger
DevSecOps integration, improved developer hygiene practices,
and automated security enforcement within web deployment
workflows. The results underscore a critical call to action for
organizations and individual professionals to revisit their
deployment pipelines and invest in proactive security measures
that extend beyond basic configuration.

Keywords: Web Application Security, Directory Brute-Forcing,
Exposed Artifacts, Devsecops, Deployment Pipelines

I. INTRODUCTION

Web application vulnerabilities continue to pose significant
threats to organizational cybersecurity, with attackers
increasingly targeting overlooked or misconfigured elements
of server infrastructure. Among these, the exposure of
sensitive directories and residual artifacts-such as. git folders,
.bash_history, and CI/CD configuration files-presents an
under-addressed yet critical vector for exploitation [1], [2].

These files often reside outside standard navigation paths and
may return HTTP 403 or 401 errors without fully restricting
access. When discovered through directory brute-forcing or
subdomain enumeration, they can leak information about
internal systems, credentials, deployment logic, or even
source code history [3]. Automated tools, such as Gobuster
and FFUF, have made identifying such exposures trivial for
even moderately skilled attackers [4]. As organizations
accelerate DevOps practices and increase deployment
frequency, the risk of exposing temporary or legacy files

AJEAT Vol.14 No.1 January-June 2025

24

grows, particularly when security reviews lag development
cycles. Studies have shown that many DevOps pipelines lack
adequate safeguards to prevent publishing sensitive build or
deployment artifacts [S]. Despite increased awareness within
the cybersecurity community, there remains limited research
on the operational awareness and mitigation strategies
adopted by administrators, developers, and DevOps
engineers regarding directory and artifact exposure. This
study addresses this gap through qualitative analysis, aiming
to uncover the behavioral, procedural, and tooling
inconsistencies that leave web infrastructure vulnerable to
such probing.

II. LITERATURE REVIEW

A. Understanding Web Application Vulnerabilities and Attack
Vectors

Web applications have become indispensable in modern
society, facilitating everything from e-commerce to critical
infrastructure management. However, this ubiquity also
makes them prime targets for malicious actors. A
foundational understanding of web application
vulnerabilities is crucial for developing robust security
postures. The Open Web Application Security Project
(OWASP) Top 10 consistently highlights prevalent risks,
including injection flaws, broken authentication, and
insecure deserialization, each of which poses significant
threats to data confidentiality, integrity, and availability [6],
[7]. A common initial phase for attackers is reconnaissance,
during which they gather information about a target system
to identify potential weaknesses. This often involves
mapping the application's structure, discovering hidden
paths, and enumerating accessible resources. Effective
reconnaissance can enable more focused attacks, making
early detection and mitigation of information exposure a
critical component of secure web application design [8], [6].

B. Directory Brute-Forcing and Enumeration

Directory brute-forcing and enumeration are potent
reconnaissance techniques used by attackers to discover
hidden directories, files, and resources on a web server that
are not typically linked or publicly advertised. Tools such as
Gobuster, Dirb, and Feroxbuster automate this process by
systematically guessing common directory and file names to
identify accessible endpoints [9], [10]. The goal is to uncover

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Directory Brute-Forcing and Artifact Exposure: Qualitative insight into Underestimated Threats to Web Application Security

sensitive information, administrative interfaces, backup files,
or misconfigured resources that could lead to further
exploitation [11]. The impact of successful enumeration can
be severe. For instance, discovering an unlinked
administrative panel could enable unauthorized access if
default credentials are in use or if authentication bypass
vulnerabilities exist. Similarly, locating old backup files or
configuration files can expose sensitive data, internal
network structures, or credentials that attackers may leverage
for privilege escalation or lateral movement within a network
[9], [10], [12]. The evolution of these techniques has
paralleled the growth of web applications, making them a
persistent threat that requires proactive mitigation [13], [9],
[10].

C. Exposure of Sensitive Developer Artifacts and
Misconfigurations

A particularly insidious aspect of web vulnerability stems
from the unintentional exposure of sensitive development
artifacts and misconfigurations. These exposures often occur
due to oversight, misconfigured web servers, or inadequate
deployment practices, leaving critical internal information
accessible to the public internet. Common examples of such
exposed artifacts include git repositories, env files containing
environment variables and sensitive credentials, .bash history
files (which can reveal commands executed on a server),
docker-compose, yml files (detailing container
configurations), backup files, and uncompiled source code
[14]. The risk is profound: source code disclosure can reveal
proprietary logic and vulnerabilities, while exposed
credentials or configuration files can grant direct access to
databases, APIs, or internal systems.

The causes of such exposures are multifaceted, frequently
stemming from improper. git ignore usage in development
workflows, incorrect web server configurations (e.g.,
enabling directory listing in Apache or Nginx), flawed
deployment scripts that fail to sanitize assets, or inadvertently
pushing development-specific files to production
environments. Real-world incidents have repeatedly
demonstrated that these seemingly minor oversights can lead
to significant data breaches and system compromises [15].
While the technical means to prevent these exposures exist,
the persistent occurrence of such vulnerabilities highlights a
deeper problem related to human practices and the
implementation of security controls throughout the
development and operations lifecycle [16].

D. Human Factors, Awareness, and DevSecOps Practices

Despite advancements in security technologies, human
factors remain a primary contributor to cybersecurity
incidents. Studies consistently indicate that errors, lack of
awareness, insufficient training, and poor adherence to
security policies by individuals directly involved in software
development and deployment play a significant role in
introducing and perpetuating vulnerabilities [17], [18]. This

25

underscores the critical importance of understanding the
human element in preventing issues such as artifact exposure.
Research on developer and operations awareness often
reveals disparities in understanding and prioritizing security.
While some developers may possess strong secure coding
knowledge, they might overlook deployment-specific risks or
the implications of certain configurations. The rise of
DevOps has introduced methodologies aimed at accelerating
software delivery through increased collaboration and
automation; however, this acceleration can inadvertently
bypass security checks if not explicitly integrated [19], [20].

This challenge has led to the emergence of DevSecOps, a
paradigm that advocates for “shifting security left”-
integrating security considerations and practices throughout
the entire software development lifecycle, from design and
coding to testing and deployment. Effective DevSecOps
relies on automated security testing, continuous monitoring,
and fostering a culture in which security is treated as a shared
responsibility rather than an afterthought [21]. Training and
educational initiatives are pivotal in enhancing the security
posture of development and operations teams, aiming to instil
a proactive security mindset and mitigate human-induced
vulnerabilities.

E. Gaps in Current Research

Existing literature offers a robust technical understanding of
web application vulnerabilities, including the mechanics of
directory brute-forcing and the types of sensitive artifacts that
can be exposed. There is also a growing body of work on
DevSecOps principles and the importance of human factors
in cybersecurity [22]- [25]. However, a significant gap exists
in qualitative research that delves deeply into the perceptions,
awareness levels, and practical mitigation strategies
employed by the individuals directly involved in web
development and deployment-namely, DevOps engineers,
system administrators, and web developers-regarding the
specific risks of directory brute-forcing and the exposure of
development artifacts. While some studies touch on general
security awareness, few provide in-depth, firsthand accounts
of the challenges, “blind spots,” and decision-making
processes faced by practitioners in their day-to-day
operations that contribute to these vulnerabilities. This
qualitative study aims to bridge this gap by offering rich,
nuanced insights into the human and practical dimensions of
preventing hidden resource exposure, thereby
complementing the existing technical and theoretical
literature.

I1I. METHODOLOGY
A. Research Design
This study adopted a qualitative research design with an
exploratory orientation. The nature of the research question-
focusing on human awareness, behavioural patterns, and

operational practices-demanded a design capable of
providing deep, interpretive insight rather than surface-level

AJEAT Vol.14 No.1 January-June 2025

Aminu Muhammad Auwal

quantification. Qualitative exploration is particularly well-
suited to uncovering not just what is being done, but how and
why it is done, especially in contexts where existing literature
is sparse or fragmented, aligning with Braun and Clarke’s
framework [26]. The decision to employ this approach was
influenced by the complexity of web vulnerability

management, particularly where technical knowledge
intersects with organizational culture, deployment
workflows, and individual responsibility. Rather than

surveying hundreds of professionals to identify statistically
measurable trends, the intent was to focus on a smaller,
purposive sample of practitioners to understand their
thinking, assumptions, and practices in real-world settings.

This design enabled the researcher to gather rich descriptions
of how developers, DevOps engineers, and system
administrators perceive risks related to directory brute-
forcing and the exposure of sensitive artifacts-such as. git
directories, shell history files, and environment configuration
files. Through natural conversations and semi-structured
dialogue, it became possible to reveal gaps between assumed
security practices and actual behaviours, as well as the
rationale behind certain decisions (or omissions) that might
leave systems vulnerable.

B. Sampling Strategy

The sampling approach for this study was deliberately
purposive, as defined by Jacques and Wright [27], driven by
the need to engage participants with real, hands-on
experience in deploying, managing, or securing web
applications. The goal was not to generalize findings to a
broader population but rather to gather meaningful,
experience-based insights into the research questions,
particularly regarding artifact exposure and directory brute-
forcing. A total of eleven participants were recruited, all of
whom were professionals based in Nigeria and actively
engaged in various areas of software development, systems
administration, and DevOps. Some worked in formal
institutions, such as universities and corporate organizations,
while others operated in freelance or startup environments.
This diversity of backgrounds added valuable contrast to the
data by highlighting differences in tooling, security culture,
resource availability, and awareness levels.

Recruitment was conducted informally, leveraging personal
and professional networks, Linkedln, and developer
community forums. Given the niche focus of the topic,
participants were approached based on their visible
engagement with web technologies or security-related
discourse. A brief screening ensured that each participant had
at least one year of experience working with live web
deployments and familiarity with server-side configurations
and CI/CD processes. While a sample size of eleven may
appear small, it was sufficient for this qualitative inquiry. The
sample allowed the researcher to reach thematic saturation,
where recurring ideas and concerns emerged across
interviews, enabling the identification of not just individual
narratives but patterns of thought and practice shared within

AJEAT Vol.14 No.1 January-June 2025

26

the group. Each participant brought a unique perspective, yet
several reported overlapping experiences-particularly
regarding overlooked security gaps and the reasons those
gaps persist despite growing awareness of associated threats.

C. Data Collection

Data for this study were collected through semi-structured
interviews, a method chosen for its flexibility and depth. This
approach enabled guided yet open-ended conversations,
allowing participants to speak freely about their experiences,
while also permitting the researcher to probe deeper when
interesting or unexpected insights emerged. The semi-
structured format ensured that certain core topics-such as
awareness of directory brute-forcing, practices around
artifact management, and the use of mitigation tools-were
consistently addressed across all interviews.

Interviews were conducted over a span of two weeks using
virtual platforms such as Google Meet, Telegram Voice, and
WhatsApp Calls, depending on each participant’s preference
and internet accessibility. This virtual mode of data collection
was both practical, given geographical distribution and time
constraints, and well suited to the participants’ tech-oriented
backgrounds and digital workflows. Each interview lasted
between 30 and 45 minutes, and all were conducted in
English. Prior to each interview, participants were provided
with a brief overview of the study’s aims and assured of
confidentiality. With verbal consent, interviews were audio-
recorded to ensure accuracy in subsequent transcription and
analysis. The interviews began with general questions about
participants’ roles and deployment experiences, gradually
progressing to their understanding of web-based
vulnerabilities and then focusing on directory brute-forcing,
artifact exposure, and how (or whether) such issues were
mitigated within their environments.

Although the interviews followed a guiding framework, the
researcher intentionally allowed space for participants to
explore topics they deemed important. In several instances,
participants shared detailed accounts of incidents they had
witnessed or managed-including cases involving security
oversights that resulted in near-breaches or internal red flags.
These narratives enriched the data, adding authenticity and
highlighting not only the technical context but also the ethical
and emotional considerations practitioners encounter in their
day-to-day work.

D. Ethical Considerations

While this study did not pass through a formal university
ethics board, every effort was made to ensure that it adhered
to accepted standards of research integrity and ethical
responsibility. Given the sensitivity of the topic-addressing
potential security lapses and individual or organizational
practices-it was essential to engage each participant with
clarity, discretion, and respect. Participants were fully
informed, prior to the start of each interview, about the
study’s purpose, the nature of the questions to be asked, and

Directory Brute-Forcing and Artifact Exposure: Qualitative insight into Underestimated Threats to Web Application Security

the intended use of their responses. It was emphasized that
the study was strictly academic in nature and not a security
audit or assessment. Participants were assured that no part of
their responses would be linked to their names, organizations,
or specific projects in any published form. To protect
identities, all personal identifiers were removed during
transcription, and participants were assigned generic labels
such as “Participant A,” “Participant B,” and so forth.

Voluntary participation was a fundamental principle of the
process. Each participant was asked to provide verbal consent
before recording commenced and was reminded that they
could skip any question or withdraw from the interview at
any point without the need to provide a reason. Fortunately,
all eleven participants completed their interviews without
withdrawal. Additionally, care was taken to avoid questions
that might place participants in legally or professionally
compromising situations. When discussions approached
sensitive details-such as server misconfigurations, data
exposure, or inadequate security practices-the researcher
guided the conversation toward generalized reflections rather
than specific incidents. The aim was not to expose flaws but
to understand broader patterns, knowledge gaps, and
practical constraints shaping behaviour in real-world
technical environments. This ethical grounding encouraged
participants to speak candidly, knowing that their insights
were valued not as vulnerabilities to be judged but as
experiences from which the field could learn. The
confidentiality measures adopted helped maintain both
academic rigor and personal trust-a balance critical when
addressing topics at the intersection of technology,
accountability, and risk.

E. Data Analysis

The data analysis process followed a thematic analysis
approach, commonly used in qualitative research to identify,
interpret, and report patterns within textual data. After
completing all eleven interviews, each audio recording was
transcribed verbatim to preserve the richness of expression,
tone, and phrasing used by participants. Transcripts were then
carefully read and reread to ensure familiarity with the
content before formal coding began.

Initial coding was conducted manually using a hybrid
approach: inductive codes, which emerged organically from
the data, and deductive codes, which were informed by the
research questions and existing literature on web
vulnerabilities. For example, inductive themes such as “false
sense of security,” “tool fatigue,” and “legacy artifact
neglect” surfaced naturally as participants recounted their
experiences. Deductive themes such as “awareness levels,”
“mitigation practices,” and “tool usage patterns” were
applied to maintain alignment with the study’s objectives.
Once preliminary codes were established, they were
organized into broader themes that captured recurring ideas
across participants. For instance, the theme “Inconsistent

27

Mitigation Strategies” consolidated responses illustrating
how teams or individuals applied security patches, updated
configurations, or managed sensitive directories based on
convenience rather than formal policies or wupdated
frameworks. Similarly, the theme “Tooling Gaps and Over-
Reliance” reflected patterns where participants either
misused widely adopted tools, failed to configure them
properly, or assumed that security responsibilities had been
fully delegated to automated pipelines without adequate
verification.

Thematic patterns were subsequently mapped against each
participant’s role and experience level to examine how
perspectives differed among DevOps engineers, system
administrators, and front-end developers, as well as between
those employed in startups versus larger institutions. This
comparative lens provided insight not only into which
vulnerabilities were recognized but also into how contextual
factors-such as team size, workload, and organizational
support-shaped whether these vulnerabilities were effectively
addressed or overlooked. Throughout the analysis, care was
taken to avoid forcing data into predefined narratives.
Instances of contradiction or anomaly-such as a participant
expressing high security awareness yet acknowledging
limited practice-were retained and treated as meaningful
signals rather than inconsistencies. These contradictions
often illuminated the gap between theory and practice,
intention and execution-yielding some of the study’s most
valuable insights.

IV. FINDINGS OF THE STUDY
A. Inconsistent Mitigation Practices

One of the most prominent themes identified was the
inconsistency in how security mitigation strategies were
applied across teams and environments. While participants
generally agreed on the importance of securing production
systems, their approaches varied widely-often shaped by time
constraints, the absence of formal policies, or reliance on ad
hoc routines. For instance, several participants acknowledged
a heavy reliance on frameworks or DevOps pipelines to
“handle most of it,” whereas others described practices
involving manual cleanup and validation. However, when
asked whether they routinely checked for exposed. git folders
or shell artifacts after deployment, only 3 out of 11
participants reported doing so consistently. “Honestly, it
depends on the day. If we’re rushing a release, security
checks are sometimes skipped. Not proud of it, but it
happens.” - Participant C (DevOps Engineer, Fintech)

Another participant from a smaller startup reflected: “We use
Docker a lot, and I thought the containers isolated things
enough. But during testing, we found an old .bash history that
somehow got bundled in a volume. It was embarrassing.”

- Participant G (Backend Developer, Startup)

AJEAT Vol.14 No.1 January-June 2025

Aminu Muhammad Auwal

TABLE I OBSERVED VARIANTS IN MITIGATION BEHAVIOR

Mitigation Approach

Number of Participants

Notes

Consistent and documented 2

Mainly from regulated sectors (e.g., finance)

Ad hoc/manual

Often based on personal discipline rather than policy

Belief in “done by CI/CD” without audit

5
Automated via pipeline, but unchecked 3
No dedicated strategy 1

Admitted full reliance on default server settings

These responses illustrate a crucial disconnect: Although
participants were technically aware of the dangers, many
lacked structured, repeatable procedures to mitigate them.

This inconsistency creates opportunities for exploitation-
particularly by attackers using automated tools to brute-force
or enumerate hidden paths. Participants also expressed
concern that their current practices might not scale effectively
or remain secure as system complexity increases.

B. Awareness of Artifact Exposure

A second major theme cantered on the participants’ level of
awareness regarding the exposure of sensitive artifacts-
particularly version control directories (e.g., git, .svn), shell
history files (e.g., .bash history, zsh history), and
environment configuration files (e.g., env, profile). While
most participants acknowledged the theoretical risk of
leaving such files accessible on public-facing servers, actual
awareness of their presence in production environments
varied significantly. Several respondents expressed surprise

when specific examples were mentioned, particularly
regarding. git folders being indexed by search engines or
accidentally bundled in deployments.

“Wait, git folders can be accessed from the browser if not
restricted? 1 thought the server would just ignore that.”
- Participant D (Frontend Developer, mid-size company)

Only 4 out of 11 participants reported proactive behaviors-
such as scanning deployments for lingering development
files or configuring .htaccess or Nginx rules to explicitly
block access to such resources.

One DevOps engineer reflected: “It’s easy to forget about
things like. env or. bashrc. They’re just there on your local,
but in shared hosting or Docker images, they creep in. We
learned the hard way when someone pulled secrets from an
old .env file once.” - Participant H (DevOps Engineer, SaaS
company) Despite the obvious security implications, the
level of formal training or onboarding content addressing this
issue appeared minimal.

TABLE Il SUMMARY OF AWARENESS LEVELS

Artifact Type Participants Aware of Risk | Participants Who Scan or Prevent
. git directories 9/11 4/11
.bash history 6/11 3/11
. env, profile 7/11 3/11
Shell aliases/config 4/11 1/11

This table illustrates a troubling gap between theoretical
awareness and applied preventive action. Some participants
assumed that their hosting provider or CI/CD tool “took care
of that,” indicating an underlying overconfidence in default
configurations.

Na renesss

Overall, the data suggest that while professionals are aware
of these risks, they do not routinely audit their systems to
identify them-particularly in fast-paced environments.

i el ecTo; N

Arﬁlfactn@mp

prosure

+4 r.-, Pant FoE

NConsis

Ses s

‘evelope¢ S Tevon

Adm 1111utr ators 3
Fig. 1 Word Cloud Highlighting Key Terms and Themes from Participant Responses on Artifact Exposure and Security Awareness

AJEAT Vol.14 No.1 January-June 2025

Directory Brute-Forcing and Artifact Exposure: Qualitative insight into Underestimated Threats to Web Application Security

C. Over-Reliance on Tools and Automation

Another recurring theme was the over-reliance on automated
tools, CI/CD pipelines, and frameworks for security
enforcement-often without proper validation or manual
review. While automation is essential for scalability and
efficiency, many participants revealed that their teams rarely
audited the outputs or configurations of these tools, assuming
that security tasks were being fully handled in the
background. This faith in automation was particularly evident
among mid-level developers and teams using modern
DevOps stacks such as Docker, GitHub Actions, and cloud-
native deployment pipelines. However, few had configured
these systems to explicitly detect or block common
exposures, such as. git folders or shell artifacts.

“We use GitHub Actions and Docker for everything. I
thought the linter or the Dockerfile setup would catch

anything dangerous, but it turns out, unless you specifically
exclude those files, they g0 through.”
- Participant A (DevOps Engineer, e-commerce firm) In one
notable case, a participant described an incident where an
internal build script-assumed to be secure-pushed a zipped
directory containing both the application and its hidden. git
history to a public subdomain:

“We only realized it when someone posted the link in a bug
bounty forum. The automation just zipped and deployed
everything in the repo.” - Participant I (Backend Developer,
Media Startup) The data indicate that while tools can enforce
certain best practices, they often lack the contextual
understanding or human-level scrutiny needed to identify
nuanced vulnerabilities. For example, a. git folder might not
trigger a security warning unless a specific rule or plugin is
configured to detect it.

TABLE III TOOL USAGE AND ASSUMPTIONS TABLE

. Assumed Secure by Custom Security Config Manual Review
Automation Tool Used Default Applied Practiced
GitHub Actions 8/11 2/11 3/11
Docker (for packaging) 9/11 4/11 2/11
Web Framework
(e.g. Laravel, Django) o1l /i 211

From this, many participants placed excessive trust in default
configurations, expecting them to cover all aspects of
deployment security. The lack of awareness regarding the
boundaries of these tools' responsibilities led to blind spots,
particularly in handling legacy files and hidden metadata.

In essence, automation was treated not as an aid to security
hygiene, but as its replacement.

D. Cultural and Communication Gaps Between Roles

Beyond technical issues, a notable theme was the disconnect
in communication and security culture among administrators,
developers, and DevOps engineers. Participants frequently
highlighted that security responsibilities were often unclear
or unevenly distributed, leading to gaps in coverage and
accountability. Several participants mentioned that security
knowledge tended to be siloed-developers might understand
code-level risks but were less aware of infrastructure

exposures, while system administrators focused on network-
level controls and patching, leaving file-level risks
overlooked.

“We don’t always talk enough between teams. Sometimes, I
only hear about a security issue after it’s too late. The DevOps
folks think we handle the servers, but we don’t check for
hidden folders in deployments.” - Participant F (System
Administrator, Financial Services)

“It’s a bit of a blame game sometimes. Developers say
admins should lock down directories; admins say developers
shouldn’t commit secret files. Without a clear owner, these
things slip through.” - Participant B (Senior Developer, SaaS)
This cultural gap was further compounded by the lack of
formalized training or cross-functional security policies.
Although many participants expressed interest in improving
awareness and practices, organizational inertia and resource
constraints posed challenges.

TABLE IV SUMMARY COMMUNICATION AND ROLE CLARITY

Issue Frequency (Participants Mentioning)
Lack of clear ownership for artifact security 8/11
Insufficient cross-team communication 7/11
Desire for more security training & policies 9/11

Participants generally agreed that improved collaboration
and clearer role definitions could help reduce many of the
operational security gaps related to exposed artifacts and
brute-force vulnerabilities.

29

V. DISCUSSION
A. Technical Awareness and Practice Gaps

A key finding was the inconsistency between awareness and
actual mitigation practices. While nearly all participants

AJEAT Vol.14 No.1 January-June 2025

Aminu Muhammad Auwal

recognized that artifacts such as. git directories pose security
risks, only a minority actively scanned for or remediated
these vulnerabilities. This gap between knowledge and action
echoes findings from prior research [28]-[30], which
observed that security knowledge does not always translate
into consistent practice, particularly in fast-paced
development environments.

The presence of hidden files-such as .bash history and
environment configuration files-in production systems
further highlights operational oversights. Such files can
expose sensitive command histories or credentials, serving as
valuable reconnaissance targets for attackers conducting
brute-force or lateral movement attacks. The sporadic
attention paid to these files suggests a lack of comprehensive
deployment hygiene protocols and formal risk assessments.

B. Over-Reliance on Automation Tools

Participants reported significant reliance on automated tools-
such as CI/CD pipelines, linters, and deployment scripts-to
manage security configurations. However, this reliance was
often misplaced; many admitted that default configurations
failed to exclude dangerous artifacts, and manual auditing
was rare. This observation aligns with existing literature
warning that automation, while powerful, cannot replace
expert oversight [31]-[33].

This over-trust in tools without sufficient customization or
verification can lead to false security assumptions.
For example, tools may not flag. git directories unless
explicitly configured to do so. Similarly, automated scans
might overlook transient or legacy files if scanning rules are
not continuously updated. Therefore, security automation
should be viewed as a complement to-not a substitute for-
human expertise and routine audits.

C. Organizational Culture and Communication Barriers

A notable barrier identified in the study was the lack of clear
ownership regarding artifact security. Participants described
scenarios in which developers, administrators, and DevOps
engineers operated in silos, often assuming that someone else
was responsible for securing hidden or sensitive files. This
ambiguity led to gaps in accountability, with no single role
consistently taking responsibility for checking or removing
exposed artifacts. As a result, critical vulnerabilities
frequently slipped into production unnoticed, despite good
intentions and general awareness.

This finding supports the growing recognition in the
literature that security cannot be effectively maintained in
fragmented environments. As noted in [34], [35], embedding
security as a shared responsibility across development,
operations, and security teams is essential to reducing
oversight. Organizational structures that promote cross-
functional collaboration-such as joint deployment checklists
or integrated review meetings-have been shown to enhance

AJEAT Vol.14 No.1 January-June 2025

30

security readiness and ensure that responsibilities are clearly
communicated.

Moreover, many participants expressed a desire for more
structured security training but cited competing work
priorities and lack of organizational support as barriers.
While motivation existed, the absence of role-specific
security programs and scheduled learning sessions prevented
deeper engagement. This is consistent with studies such as
[36], [37], which emphasize the importance of continuous,
tailored training to improve security literacy and operational
outcomes across development teams.

D. Practical Implications for Stakeholders

For developers, the findings highlight the importance of
incorporating artifact hygiene into the software development
lifecycle, including explicit exclusions in. gitignore and
deployment scripts. Developers should be encouraged to
routinely audit their repositories for sensitive files and be
trained to understand the security implications of legacy
artifacts [38], [39].

For DevOps engineers, the study underscores the need to
rigorously configure CI/CD pipelines and containerization
workflows to detect and prevent unintended artifact
deployment. Automated tools should be regularly updated
and supplemented with manual inspections, particularly
when managing complex build environments.

For system administrators and security teams, the results
suggest adopting systematic scanning of production
environments for exposed directories and files, coupled with
swift remediation protocols. Establishing monitoring and
alerting mechanisms around unusual directory access can
also provide early warnings of brute-force or enumeration
attempts.

At the organizational level, fostering a culture of shared
security responsibility-supported by clear policies and
communication channels-is essential to address the gaps
identified.

E. Limitations and Scope

While this qualitative study provided rich insights, several
limitations must be acknowledged. The sample size of 11
participants, although adequate for exploratory research,
limits broader generalizability. Participants were primarily
from medium to small enterprises and startups, which may
have different security maturity levels compared to larger
organizations. The geographic and industry diversity was
also limited, potentially biasing the perspectives captured.
Additionally, the study relied on self-reported data, which can
introduce social desirability bias, as participants might
overstate their security awareness or practices.

Future research should consider larger and more diverse
samples and employ mixed methods-combining qualitative

Directory Brute-Forcing and Artifact Exposure: Qualitative insight into Underestimated Threats to Web Application Security

interviews with quantitative vulnerability assessments-to
validate and extend these findings.

F. Future Research Directions

Building on this work, future studies could investigate the
effectiveness of specific training programs tailored to artifact
security or evaluate new automated tools designed to detect
and block the exposure of sensitive artifacts. Additionally,
research into organizational change strategies aimed at
enhancing cross-team communication and clarifying
ownership of security responsibilities could provide valuable
insights.

VI. CONCLUSION

This study examined the awareness and mitigation strategies
employed by web administrators, developers, and DevOps
engineers in addressing the risks associated with directory
brute-forcing and the exposure of sensitive artifacts such as.
git folders and shell history files. Through qualitative
interviews with 11 professionals, the research uncovered
notable inconsistencies in security practices, a heavy reliance
on automation tools without sufficient manual oversight, and
significant communication and cultural gaps within
organizations. The findings reveal that despite general
awareness of these risks, operationalizing -effective
mitigation remains a challenge. Artifact exposures persist due
to unclear role ownership, incomplete training, and
overconfidence in automated processes. These vulnerabilities
present a tangible attack surface that adversaries can exploit,
especially when combined with other attack vectors.
Addressing these issues requires a comprehensive approach
that combines technical controls with organizational change.
Clear delineation of security responsibilities, ongoing
education tailored to different roles, and the integration of
manual audits with automated tooling are essential steps
toward improving security hygiene. This research contributes
to the understanding of operational security challenges in
modern web environments and highlights a critical gap
between what is technically possible and what is routinely
secured. It encourages organizations to prioritize artifact
security as part of their broader cybersecurity strategy and
calls for further research into effective interventions. By
bridging the disconnect between awareness and practice,
organizations can significantly reduce their vulnerability to
brute-force attacks and artifact exposure, thereby enhancing
their overall security posture.

VII. RECOMMENDATIONS

This study highlights the urgent need for improved
operational security practices among administrators and
DevOps teams. Regular configuration audits and the
integration of secure defaults within deployment pipelines
should be prioritized to prevent the exposure of sensitive
directories and artifacts, such as.git folders and .bash_ history
files. Organizations are encouraged to adopt lightweight,

31

automated scanning tools in development and staging
environments to proactively detect an alert on such
exposures. In addition to tooling, targeted training programs
are needed to address the observed gaps in awareness and the
inconsistent mitigation practices identified in this study.
Ultimately, fostering a security culture based on the principle
of “least exposure”-treating all files and directories as
potentially public until proven otherwise-can help teams
reduce attack surfaces and strengthen their overall defensive
posture.

Declaration of Conflicting Interests
The author declares no potential conflicts of interest with respect to the
research, authorship, and/or publication of this article.

Funding

The author received no financial support for the research, authorship, and/or
publication of this article.

Use of Artificial Intelligence (AI)-Assisted Technology for Manuscript
Preparation

The author confirm that no Al-assisted technologies were used in the
preparation or writing of the manuscript, and no images were altered using
Al

REFERENCES

(1]
(2]
(3]

M. Bach-Nutman, “Understanding the top 10 OWASP vulnerabilities,”
arXiv, 2020, doi: 10.48550/arxiv.2012.09960.

O. Ezenwoye and Y. Liu, “Web application weakness ontology based
on vulnerability data,” arXiv, 2022, doi: 10.48550/arxiv.2209.08067.
C. S. Cheah and V. Selvarajah, “A review of common web application
breaching techniques (SQLI, XSS, CSRF),” Atlantis Highlights in
Computer Sciences, 2021, doi: 10.2991/ahis.k.210913.068.

N. Suguna, “Hunting pernicious attacks in web applications with
XProber,” American Journal of Applied Sciences, vol. 11, no. 7,
pp. 1164-1171, 2014, doi: 10.3844/ajassp.2014.1164.1171.

B. Zhang, J. Li, J. Ren, and G. Huang, “Efficiency and effectiveness of
web application vulnerability detection approaches: A review,” 4ACM
Computing Surveys, vol. 54,2021, doi: 10.1145/3474553.

N. Singh, P. Gupta, V. Singh, and R. Ranjan, “Attacks on vulnerable
web applications,” in Proc. 2021 Int. Conf. Intelligent Technologies
(CONIT), pp. 1-5, 2021, doi: 10.1109/CONIT51480.2021.9498396.
D. Dommeti and P. Voola, “Identifying and mitigating common web
application vulnerabilities,” South Asian Journal of Engineering and
Technology, 2023, doi: 10.26524/sajet.2023.13.9.

A. Kalim, C. Jha, D. Singh, D. Tomar, and D. Tomar, “A framework
for web application vulnerability detection,” International Journal of
Engineering and Advanced Technology, 2020, doi: 10.35940/ijeat.c
4778.029320.

N. Farras, J. Loderick, H. Saputri, and A. Sari, “Exploring penetration
testing: A comparative analysis of brute force directory tools in
vulnerability analysis phase,” in Proc. 2024 2nd Int. Conf. Technology
Innovation and Its Applications (ICTII4), pp. 1-6, 2024, doi:
10.1109/ICTIIA61827.2024.10761451.

D. Antonelli, R. Cascella, A. Schiano, G. Perrone, and S. P. Romano,
“‘Dirclustering’: A semantic clustering approach to optimize website
structure discovery during penetration testing,” Journal of Computer
Virology and Hacking Techniques, vol. 20, no. 4, pp. 565-577, 2024,
doi: 10.1007/s11416-024-00512-6.

V. Aggarwal et al., “A comparative study of directory fuzzing tools,”
in Proc. 2023 Int. Conf. Circuit Power and Comput. Technol.
(ICCPCT), Kollam, India, pp. 1368-1374, 2023, doi: 10.1109/ICCP
CT58313.2023.10245217.

D. Antonelli, R. Cascella, G. Perrone, S. Romano, and A. Schiano,
“Leveraging Al to optimize website structure discovery during
penetration testing,” arXiv preprint, 2021, doi: 10.1007/s11416-024-
00512-6.

(4]

(3]

(6]

(71

(8]

(9]

[10

[

[1

—

[12

—

AJEAT Vol.14 No.1 January-June 2025

Aminu Muhammad Auwal

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25

—

[26]

A. Castagnaro, M. Conti, and L. Pajola, “Offensive Al: Enhancing
directory brute-forcing attack with the use of language models,” arXiv,
2024, doi: 10.48550/arxiv.2404.14138.

C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig, “Investigating
system operators’ perspective on security misconfigurations,” in Proc.
2022 ACM SIGSAC Conf. Computer and Communications Security,
pp. 1272-1289, Oct. 2018, doi: 10.1145/3243734.3243794.

M. Hasan, F. Z. Rozony, M. Kamruzzaman, and M. K. S. Uddin,
“Common cybersecurity vulnerabilities: Software bugs, weak
passwords, misconfigurations, social engineering,” Deleted Journal,
vol. 3, no. 4, pp. 42-57, Aug. 2024, doi: 10.62304/jieet.v3i04.193.

S. K. Basak, L. Neil, B. Reaves, and L. Williams, “What are the
practices for secret management in software artifacts?” Sage Journals,
pp. 69-76, Oct. 2022, doi: 10.1109/secdev53368.2022.00026.

M. Akbar, S. Rafi, S. Hyrynsalmi, and A. Khan, “Towards people
maturity for secure development and operations: A vision,” in Proc.
28th Int. Conf. Evaluation and Assessment in Software Engineering,
2024, doi: 10.1145/3661167.3661238.

X. Ramaj, M. Sanchez-Gordon, R. Palacios, and V. Gkioulos,
“Training and security awareness under the lens of practitioners: A
DevSecOps perspective towards risk management,” in Lecture Notes
in Computer Science, Springer, 2024, doi: 10.1007/978-3-031-61382-
1_6.

R. Rajapakse, M. Zahedi, M. Babar, and H. Shen, “Challenges and
solutions when adopting DevSecOps: A systematic review,”
Information and Software Technology, vol. 139, p. 106700, 2021,
doi: 10.1016/j.infsof.2021.106700.

R. Naidoo and N. Moller, “Building software applications securely
with DevSecOps: A socio-technical perspective,” in Proc. European
Conf. Cyber Warfare and Security, 2022, doi: 10.34190/eccws.21.
1.295.

N. Tomas, J. Li, and H. Huang, “An empirical study on culture,
automation, measurement, and sharing of DevSecOps,” in Proc. 2019
Int. Conf. Cyber Security and Protection of Digital Services, pp. 1-8,
2019, doi: 10.1109/CyberSecPODS.2019.8884935.

A. Bararia and V. Choudhary, “Systematic review of common web-
application vulnerabilities,” International Journal of Scientific
Research in Engineering and Management, 2023, doi: 10.55041/
ijsrem17487.

T. Kerr-Smith, S. Tirumala, and M. Andrews, “Assessing web
application security through vulnerabilities in programming languages
and environments,” in Proc. CITRENZ 2023 Conf., Auckland, pp. 27—
29, 2024, doi: 10.34074/proc.240109.

F. Lombardi and A. Fanton, “From DevOps to DevSecOps is not
enough: CyberDevOps — an extreme shifting-left architecture to bring
cybersecurity within software security lifecycle pipeline,” Software
Quality Journal, vol. 31, pp. 619-654, 2023, doi: 10.1007/s11219-023-
09619-3.

F. Fadlalla and H. Elshoush, “Input validation vulnerabilities in web
applications: Systematic review, classification, and analysis of the
current state-of-the-art,” [EEE Access, vol. 11, pp. 4012840161, 2023,
doi: 10.1109/ACCESS.2023.3266385.

V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77-101, Jan.
2006, doi: 10.1191/1478088706qp0630a.

AJEAT Vol.14 No.1 January-June 2025

32

[27]

[28

[}

[29]

[30]

[31]

[32

—

[33]

[34]

[35

[t}

[38]

[39]

S. Jacques and R. Wright, “Intimacy with outlaws: The role of
relational distance in recruiting, paying, and interviewing underworld
research participants,” Journal of Research in Crime and Delinquency,
vol. 45, no. 1, pp. 22-38, 2008, doi: 10.1177/0022427807309439.

H. Yasar, “Experiment: Sizing exposed credentials in GitHub public
repositories for CI/CD,” in Proc. 2018 IEEE Cybersecurity
Development (SecDev), Cambridge, MA, USA, pp. 143-143, 2018,
doi: 10.1109/SecDev.2018.00039.

M. Malatji, “Industrial control systems cybersecurity: Back to basic
cyber hygiene practices,” in Proc. 2022 Int. Conf. Electrical, Computer
and Energy Technologies (ICECET), Prague, Czech Republic, pp. 1—
7, 2022, doi: 10.1109/ICECET55527.2022.9872810.

K. A. Y. Yaseen, “Importance of cybersecurity in the higher education
sector 2022,” Asian Journal of Computer Science and Technology,
vol. 11, no. 2, pp. 20-24, 2022, doi: 10.51983/ajcst-2022.11.2.3448.
Y. Chen, F. M. Zahedi, A. Abbasi, and D. Dobolyi, “Trust calibration
of automated security IT artifacts: A multi-domain study of phishing-
website detection tools,” Information & Management, vol. 58, no. 1,
p. 103394, 2020, doi: 10.1016/1.im.2020.103394.

J. Tilbury and S. Flowerday, “Automation bias and complacency in
security operation centers,” Computers, vol. 13, no. 7, p. 165, 2024,
doi: 10.3390/computers13070165.

M. S. Islam, M. Sajjad, M. M. Hasan, and M. S. 1. Mazumder,
“Phishing attack detecting system using DNS and IP filtering,” Asian
Journal of Computer Science and Technology, vol. 12, no. 1, pp. 16—
20, 2023, doi: 10.51983/ajcst-2023.12.1.3552.

M. S. Khan, A. W. Khan, F. Khan, M. A. Khan, and T. K. Whangbo,
“Critical challenges to adopt DevOps culture in software
organizations: A systematic review,” I[EEE Access, vol. 10, pp. 14339—
14349, 2022, doi: 10.1109/access.2022.3145970.

K. Khattak, F. Qayyum, S. S. A. Naqvi, A. Mehmood, and J. Kim, “A
systematic framework for addressing critical challenges in adopting
DevOps culture in software development: A PLS-SEM perspective,”
IEEE Access, vol. 11, pp. 120137-120156, 2023, doi:
10.1109/access.2023.3325325.

S. Ghobadi and L. Mathiassen, “Perceived barriers to effective
knowledge sharing in agile software teams,” Information Systems
Journal, vol. 26, no. 2, pp. 95-125, 2014, doi: 10.1111/isj.12053.

0. O. Blaise, 1. Aaron, U. Alfred, and A. Amusa, “Evaluating the
ethical frameworks of information security professionals: A
comparative analysis,” Asian Journal of Computer Science and
Technology, vol. 13, no. 2, pp. 61-66, 2024, doi: 10.70112/ajcst-
2024.13.2.4289.

S. Ravichandran and K. L. N. Rao, “Design and development of an
advancing web information stockpiling for engraved ontology in user
contours,” Asian Journal of Computer Science and Technology,
vol. 11, no. 2, pp. 11-15, 2022, doi: 10.51983/ajcst-2022.11.2.3379.
A. M. Auwal and S. Lazarus, “Sociological and criminological
research of victimization issues: Preliminary stage and new sphere of
cybercrime categorization,” Journal of Digital Technology & Law, vol.
2, no. 4, pp. 915-942, 2024, doi: 10.21202/jdtl.2024.44.

