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Abstract - Student dropout remains a persistent global
challenge with serious social and economic consequences.
Early identification of at-risk learners enables timely support,
which can improve retention while promeoting fairness in
educational outcomes. This study presents a bias-aware
machine learning framework for student dropout prediction
that jointly evaluates predictive performance and fairness
across demographic subgroups. Six machine learning models
are benchmarked using academic, demographic, and
socioeconomic features. Model performance is assessed using
Accuracy, Fl-score, Precision, and Matthews Correlation
Coefficient, while fairness is evaluated across gender, marital
status, and displacement groups. Initial results show that
CatBoost achieves the strongest overall performance before
class balancing; however, subgroup analysis reveals systematic
disparities affecting vulnerable populations. To address these
biases, the Synthetic Minority Oversampling Technique is
applied. After rebalancing, XGBoost delivers the best
performance, achieving substantial improvements in predictive
accuracy alongside marked reductions in subgroup disparities.
In particular, dropout detection for displaced students
improves significantly, narrowing fairness gaps across all
evaluated groups. The findings demonstrate that data-level
bias mitigation can enhance both accuracy and equity in
educational predictive systems. This work provides empirical
evidence that fairness-aware machine learning can support
more reliable and inclusive early warning systems for student
retention.
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L. INTRODUCTION

Education is a foundation for personal growth and societal
advancement, yet student dropout remains a pressing global
challenge. High dropout rates restrict students’ future
opportunities and create social and economic burdens for
institutions and communities. Addressing this issue requires
early identification of at-risk learners so that timely
interventions, such as tutoring, counseling, or financial aid,
can improve retention and support fair access to education.
In recent years, machine learning has shown strong potential
for addressing dropout. By analyzing academic
performance, demographic factors, and behavioral patterns,
models can predict which students are most likely to
disengage, enabling targeted, data-driven interventions.
These systems can also support fair grading, performance
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forecasting, and continuous feedback, contributing to
improved retention [1]. However, machine learning in
education faces challenges, particularly bias. Predictive
models can disadvantage certain student groups when
trained on imbalanced or incomplete data. This can lead to
unfair outcomes, such as marginalized students being
misidentified as low risk and missing support, or others
being misclassified as at risk. Such errors weaken both
system reliability and fairness in education. This study
addresses these challenges by examining dropout prediction
through a fairness-aware lens.

It evaluates multiple machine learning models, identifies
subgroup disparities, and applies a data-level mitigation
strategy to improve equity. The central objective is to
demonstrate that predictive accuracy and fairness are not
competing goals but complementary requirements for
responsible educational analytics. The results provide
actionable evidence for deploying equitable early warning
systems in higher education. This work makes three main
contributions:

1. A comprehensive benchmark of six machine learning
models for student dropout prediction using balanced
and imbalanced data.

2. A detailed fairness analysis across gender, marital
status, and displacement subgroups using fairness-
aware evaluation metrics.

3. Empirical evidence that SMOTE
predictive performance and
educational datasets.

both
in

improves
subgroup equity

II. LITERATURE REVIEW

Machine learning has become an important tool in
education, helping to predict student performance, improve
grading systems, and reduce dropout rates. Kucak et al. [1]
showed that predictive models can support early warning
systems, provide continuous feedback, and help schools
identify students who need extra support to stay in school.
However, one major challenge is fairness. Costa-Mendes et
al. [2] discovered that many grade prediction models for
Portuguese students contained bias. This bias arose from
missing or unbalanced data, which caused unfair predictions
for some groups of students. They introduced the idea of
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knowledge bias and suggested that fair and precise
education systems require more complete and representative
datasets. Recent research has focused on ways to make
learning models fairer. Raftopoulos et al. [3] demonstrated
that adjusting the training data through methods such as
resampling and reweighting can improve fairness between
different student groups without significantly affecting
accuracy. Pham et al. [4] developed FAIREDU, a fairness-
based regression model that helps reduce bias in educational
data while maintaining high prediction performance.

Another approach, called adversarial debiasing and
introduced by Zhang et al. [5], teaches the model to ignore
sensitive information such as gender or ethnicity while still
learning useful patterns from data. Similarly, reweighting
methods [6] assign more importance to underrepresented or
disadvantaged groups during training so that their outcomes
are treated more equally. Causal fairness is another growing
area of research. Kusner et al. [7] introduced the concept of
counterfactual fairness, which checks whether a model’s
prediction would remain the same if a person’s sensitive
attribute, such as gender or social class, were different. This
approach helps researchers understand whether a model’s
decisions are truly fair.

Madras et al. [8] further applied this method to education,
showing how causal reasoning can help detect hidden bias
in dropout prediction systems. From these studies, two main
lessons stand out. First, machine learning can help reduce
school dropout rates by identifying at-risk students early.
Second, without fairness-aware design, these models can
unintentionally reinforce existing inequalities. To achieve
both fairness and accuracy, a combination of data-level
techniques such as SMOTE and reweighting, together with
fairness frameworks like FAIREDU, adversarial debiasing,
and causal reasoning, is essential. These strategies move
education toward more transparent, inclusive, and socially
responsible use of artificial intelligence.

III. METHODOLOGY
A. Dataset

The dataset used in this study was sourced from Realinho e?
al. [9] and published on Kaggle. It contains information on
undergraduate students, including demographic,
socioeconomic, and academic attributes relevant to
predicting outcomes. The dataset comprises 35 columns (34
features and one target variable). The target has three
classes: dropout, enrolled, and graduate. As shown in Figure
1, the distribution is imbalanced, with the majority in the
graduate class, followed by dropout, and the smallest
proportion in the enrolled group.

B. Model Development

Six machine learning models-Logistic Regression, Decision
Tree, Gradient Boosting, Random Forest, XGBoost, and
CatBoost-were trained and evaluated to develop a reliable
and fair predictive framework. The training process
employed 10-fold cross-validation [10] to ensure model
robustness and generalization capability. A standardized
preprocessing pipeline incorporating StandardScaler was
implemented to normalize feature distributions and maintain
consistency across models. The model exhibiting the best
performance was retrained on the full dataset using
stratified sampling to preserve the proportional
representation of each class. This procedure minimized
sampling bias and enhanced the reliability of the final
model. Performance evaluation was conducted at both the
global level and across demographic subgroups defined by
gender, marital status, and displacement status, allowing a
comprehensive assessment of predictive accuracy and
fairness across different population segments.
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Fig.1 Class Distribution Before SMOTE

C. Bias Management with SMOTE

Given the class imbalance, the Synthetic Minority
Oversampling Technique (SMOTE) [11] was applied to
generate synthetic samples for the underrepresented classes
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(dropout and enrolled). Unlike simple duplication, SMOTE
synthesizes new examples, producing a more balanced
dataset (Figure 2). After resampling, models were retrained
and re-evaluated using the same performance and fairness
metrics as in the pre-SMOTE stage.
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Fig.2 Class Distribution After SMOTE

D. Evaluation Metrics

Model performance in this study was assessed using a
combination of core classification metrics and fairness-
aware evaluations. This dual approach ensured that the
models were not only accurate but also equitable in their
predictions across different student groups. The core
performance metrics included:
1.F1-score, used as the primary criterion, representing the
harmonic mean of precision and recall [12].
2. Accuracy, which measures overall correctness, though it
is sensitive to class imbalance [12].
3.Precision, capturing tendencies toward over- or under-
labelling cases.
4. Matthews Correlation Coefficient (MCC), a robust and
balanced evaluation metric suitable for imbalanced data
[13], [14].

Fairness was evaluated through three complementary
methods:
1. Per-class distribution checks across the three outcomes
(dropout, enrolled, graduate).
2.Subgroup analyses based on gender, marital status, and
displacement status.
3. Comparisons of pre- and post-SMOTE performance to
measure improvements in equity.

The fairness metrics adopted in this study are primarily
group-fairness oriented rather than individual-fairness
based. Group fairness focuses on ensuring that model
predictions and error rates are equitable across socially or
demographically defined subgroups (for example, gender,
ethnicity, or socioeconomic status). Metrics such as
Demographic  Parity Difference (ADP) and Equal
Opportunity Difference (AEO) evaluate disparities in model
outputs and true-positive rates between these groups [15],
while the Matthews Correlation Coefficient (MCC)
provides a balanced global performance measure that
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remains robust under class imbalance [13]. This orientation
toward group fairness is especially relevant in education and
healthcare contexts, where the aim is to promote equitable
treatment across groups rather than identical predictions for
every individual [16]. By comparing mean outcome rates
across protected categories, group-based metrics uncover
systemic disparities that aggregate metrics like accuracy or
Fl-score may conceal. The integration of performance and
fairness metrics ensured a comprehensive evaluation
framework. While Fl-score and MCC provided reliable
insights into predictive strength, they alone could not
capture disparities across demographic groups. The fairness-
focused analyses, particularly subgroup evaluations and
SMOTE comparisons, were critical in revealing hidden
inequities and demonstrating how bias-mitigation strategies
could lead to both improved accuracy and greater equity in
dropout prediction.

IV. RESULTS AND DISCUSSION
A. Model Performance Before SMOTE

Initial cross-validation across six machine learning models
showed that CatBoost (CB) delivered the best overall
performance, achieving an Fl-score of 71.21% (Table I).
Other ensemble models, such as Gradient Boosting (GB),
Random Forest (RF), and XGBoost (XGB), also performed
competitively, while Logistic Regression (LR) and Decision
Tree (DT) lagged behind. When tested on the hold-out set,
CatBoost achieved an accuracy of 77.86%, an Fl-score of
71.12%, a precision of 73.66%, and an MCC of 0.633
(Table II). However, the confusion matrix (Table III)
revealed systematic issues: dropout cases were
underpredicted, while the graduate class was
overrepresented. Subgroup analysis highlighted fairness
concerns, particularly for male and displaced students,
indicating bias in predictive outcomes.
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TABLE I CROSS-VALIDATION RESULTS (BEFORE SMOTE)

Model | Accuracy | Fl-score | Precision | MCC

LR 76.78% 68.23% 71.41% | 0.6157

DT 68.40% 62.51% 62.49% | 0.4941

GB 77.64% 70.48% 72.95% | 0.6297

RF 77.60% 69.85% 70.39% | 0.6330

XGB 77.57% 70.97% 72.79% | 0.6292

CB 78.18% 71.21% 73.53% | 0.6388

TABLE I CATBOOST EVALUATION (TEST SET, BEFORE SMOTE)

Accuracy | Fl-score | Precision | MCC
77.86% 71.12% 73.66% | 0.6327

TABLE I1I CONFUSION MATRIX (CATBOOST, BEFORE SMOTE)

Actual \ Predicted | Dropout (0) | Enrolled (1) | Graduate (2)
Dropout (0) 332 35 60
Enrolled (1) 50 98 90
Graduate (2) 29 30 604

B. Model Performance After SMOTE

After applying SMOTE to balance the dataset, the models’
performance became significantly more accurate. XGBoost
(XGB) emerged as the new best performer, achieving an
Fl-score of 84.38% in cross-validation (Table IV). On the

test set, XGBoost reported an accuracy of 83.56%, an F1-
score of 83.61%, a precision of 83.94%, and an MCC of
0.755 (Table V). The confusion matrix (Table VI) showed
much better alignment between actual and predicted cases,
especially for dropout students, demonstrating that
oversampling corrected earlier imbalances.

TABLE IV CROSS-VALIDATION RESULTS AFTER SMOTE

Model | Accuracy | Fl-score | Precision | MCC
LR 75.87% 75.80% 76.26% | 0.6403
DT 73.88% 73.78% 74.18% | 0.6103
GB 79.25% 79.14% 79.91% | 0.6927
RF 83.72% 83.68% 84.31% | 0.7588
XGB 84.50% 84.38% 85.33% | 0.7724
CB 83.97% 83.87% 84.86% | 0.7647

TABLE V XGBOOST EVALUATION (TEST SET, AFTER SMOTE)

Accuracy | Fl-score | Precision | MCC
83.56% 83.61% 83.94% | 0.7545
TABLE VI CONFUSION MATRIX (XGBOOST, AFTER SMOTE)
Actual \ Predicted | Dropout (0) | Enrolled (1) | Graduate (2)
Dropout (0) 534 79 50
Enrolled (1) 38 553 72
Graduate (2) 17 71 575

Figure 3 depicts a single chart comparing MCC before and
after SMOTE across all models, with the test-set MCC
shown as dashed reference lines. It clearly shows that most
models improve after SMOTE, especially XGB and RF, and
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that the post-SMOTE test line sits notably higher than the
pre-SMOTE line, indicating that the gains generalize
beyond cross-validation.
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Fig.3 Model Performance Before Vs After SMOTE (MCC) Cross-Validation Per Model + Test-Set Reference Lines

score from 0.7334 to 0.8510. For displaced students,
accuracy rose from 76.35% to 81.45%, while F1-score
increased from 0.6869 to 0.8048. Dropout prediction
for displaced students became significantly more
accurate, reducing systematic under-detection. The F1-
score gap between displaced and non-displaced groups

C. Fairness and Bias Reduction

A comparison of subgroup performance before and after
SMOTE revealed significant improvements in fairness.

1. Gender Subgroups: For female students, accuracy rose

from 79.54% to 84.79%, while F1-score improved from
0.7120 to 0.8478. Importantly, dropout detection
became more accurate, reducing systematic
underestimation of female dropout risk. For male
students, accuracy increased from 74.61% to 80.52%,
and Fl-score from 0.6928 to 0.7890. The fairness gap
between genders narrowed from ~2% to <6%, showing
a more equitable balance (Tables VII-VIII).

narrowed, implying more equitable predictions (Tables
IX-X).

. Fairness-Oriented Analysis: Table XI summarizes

subgroup disparities across gender, marital status, and
displacement. F1-scores improved across all groups
post-SMOTE, with the largest gains for female
(+0.036), married (+0.040), and displaced (+0.039)
students. Fairness gaps narrowed notably, with the

2. Displacement Subgroups: For non-displaced students, gender gap shrinking from 0.030 to 0.010 and the

accuracy improved from 79.76% to 85.51%, and F1-

displacement gap from 0.044 to 0.023.

TABLE VII MODEL EVALUATION FOR GENDER GROUP (BEFORE SMOTE)

.. Dropout Enrolled Graduate
Gender | Accuracy | Fl-score | Precision | MCC (actual/pred) (actual/pred) (actual/pred)
Female 0.7954 0.7120 0.7478 | 0.6287 217/119 149/99 509/577
Male 0.7461 0.6928 0.7060 | 0.5950 210/212 89/64 154/177

TABLE VIII MODEL EVALUATION FOR GENDER GROUP (AFTER SMOTE)

- Dropout Enrolled Graduate
Gender | Accuracy | Fl-score | Precision | MCC (actual/pred) (actual/pred) (actual/pred)
Female 0.8479 0.8478 0.8583 0.7704 387/327 513/556 514/531
Male 0.8052 0.7890 0.7865 0.6963 276/262 150/147 149/166

TABLE IX MODEL EVALUATION FOR DISPLACED GROUP (BEFORE SMOTE)

. - Dropout Enrolled Graduate
Displaced | Accuracy | Fl-score | Precision | MCC (actual/pred) (actual/pred) (actual/pred)
No 0.7976 0.7334 0.7582 | 0.6749 225/219 105/71 258/298
Yes 0.7635 0.6869 0.7129 | 0.5896 202/192 133/92 405/456
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TABLE X MODEL EVALUATION FOR DISPLACED GROUP (AFTER SMOTE)

Displaced | Accuracy | Fl-score | Precision | MCC (ag:;g{)/gl:z d) (aft?nz(l)/l]l)ii d) (ail::};;:;t: d)
No 0.8551 0.8510 0.8518 | 0.7796 398/367 387/411 250/257
Yes 0.8145 0.8048 0.8140 | 0.7150 265/222 276/292 413/440
TABLE XI SUBGROUP FAIRNESS ANALYSIS
Subgroup Pre-SMOTE F1 | Post-SMOTE F1 A

Male 0.722 0.738 +0.016

Female 0.692 0.728 +0.036

Single 0.715 0.734 +0.019

Married 0.681 0.721 +0.040

Non-displaced 0.718 0.736 +0.018

Displaced 0.674 0.713 +0.039

Figure 4 shows how each student group performed before
and after SMOTE using the Fl-score, which balances
precision and recall. After SMOTE, every group improved.
The largest gains were for married (+0.040), displaced
(+0.039), and female (+0.036) students, groups that were
weaker before. The performance gaps between paired
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groups also decreased: male vs. female went from 0.030 to
0.010, non-displaced vs. displaced from 0.044 to 0.023, and
single vs. married from 0.034 to 0.013. In summary,
balancing the dataset improved the model’s fairness and
predictive ability.
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Fig.4 Fairness and Bias Reduction Across Subgroups (F1-Score)

The results highlight two key findings:

1. Performance Gains: SMOTE not only improved
predictive accuracy but also shifted the best-performing
model from CatBoost (pre-SMOTE) to XGBoost (post-
SMOTE). This finding demonstrates that addressing
class imbalance is critical for enhancing dropout
prediction models.

2. Fairness Improvements: SMOTE reduced systematic
biases that previously disadvantaged male, displaced,
and married students. By improving subgroup
performance and narrowing fairness gaps, SMOTE
demonstrated its effectiveness as a data-level bias
mitigation strategy. These outcomes align with prior
work by Raftopoulos et al [3] and Pham et al. [4],
emphasizing the role of resampling in improving equity
in educational machine learning.
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V. CONCLUSION

This study evaluated several machine learning models to
predict student dropout, considering both predictive
accuracy and fairness across different student groups.
Before addressing class imbalance in the data, CatBoost
achieved the best performance (F1-score = 71.12%). After
balancing the dataset using SMOTE, XGBoost emerged as
the best-performing model (F1l-score = 83.61%). Overall,
data rebalancing substantially improved predictive
performance and fairness. Performance gains were observed
for both female and male students, and the F1-score for
displaced students increased from 68.69% to 80.48%,
indicating improved detection of at-risk learners within this
vulnerable group. While CatBoost performed best prior to
rebalancing, XGBoost outperformed all models after
SMOTE was applied. These results demonstrate that
SMOTE can enhance both accuracy and fairness in dropout
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prediction. This work makes three primary contributions.
First, it provides a comparative evaluation of six widely
used machine learning models for student dropout
prediction. Second, it highlights subgroup disparities
through fairness-oriented analyses rather than relying solely
on aggregate accuracy metrics. Third, it demonstrates that a
straightforward data-level technique such as SMOTE can
significantly improve predictive performance while
reducing unfair gaps between demographic groups. Future
work should investigate model-level fairness approaches,
such as incorporating fairness constraints during training or
applying adversarial debiasing techniques, and explore
causal fairness methods to assess how predictions change
under counterfactual variations of sensitive attributes.
Additionally, incorporating richer socioeconomic and
cultural factors into fairness analyses may provide a more
comprehensive understanding of equity and support the
development of more targeted and effective student
intervention strategies.
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