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Abstract - Student dropout remains a persistent global 
challenge with serious social and economic consequences. 
Early identification of at-risk learners enables timely support, 
which can improve retention while promoting fairness in 
educational outcomes. This study presents a bias-aware 
machine learning framework for student dropout prediction 
that jointly evaluates predictive performance and fairness 
across demographic subgroups. Six machine learning models 
are benchmarked using academic, demographic, and 
socioeconomic features. Model performance is assessed using 
Accuracy, F1-score, Precision, and Matthews Correlation 
Coefficient, while fairness is evaluated across gender, marital 
status, and displacement groups. Initial results show that 
CatBoost achieves the strongest overall performance before 
class balancing; however, subgroup analysis reveals systematic 
disparities affecting vulnerable populations. To address these 
biases, the Synthetic Minority Oversampling Technique is 
applied. After rebalancing, XGBoost delivers the best 
performance, achieving substantial improvements in predictive 
accuracy alongside marked reductions in subgroup disparities. 
In particular, dropout detection for displaced students 
improves significantly, narrowing fairness gaps across all 
evaluated groups. The findings demonstrate that data-level 
bias mitigation can enhance both accuracy and equity in 
educational predictive systems. This work provides empirical 
evidence that fairness-aware machine learning can support 
more reliable and inclusive early warning systems for student 
retention. 
Keywords: Student Dropout, Machine Learning, Fairness, Bias 
Mitigation, Early Warning Systems 

I. INTRODUCTION

Education is a foundation for personal growth and societal 
advancement, yet student dropout remains a pressing global 
challenge. High dropout rates restrict students’ future 
opportunities and create social and economic burdens for 
institutions and communities. Addressing this issue requires 
early identification of at-risk learners so that timely 
interventions, such as tutoring, counseling, or financial aid, 
can improve retention and support fair access to education. 
In recent years, machine learning has shown strong potential 
for addressing dropout. By analyzing academic 
performance, demographic factors, and behavioral patterns, 
models can predict which students are most likely to 
disengage, enabling targeted, data-driven interventions. 
These systems can also support fair grading, performance 

forecasting, and continuous feedback, contributing to 
improved retention [1]. However, machine learning in 
education faces challenges, particularly bias. Predictive 
models can disadvantage certain student groups when 
trained on imbalanced or incomplete data. This can lead to 
unfair outcomes, such as marginalized students being 
misidentified as low risk and missing support, or others 
being misclassified as at risk. Such errors weaken both 
system reliability and fairness in education. This study 
addresses these challenges by examining dropout prediction 
through a fairness-aware lens.  

It evaluates multiple machine learning models, identifies 
subgroup disparities, and applies a data-level mitigation 
strategy to improve equity. The central objective is to 
demonstrate that predictive accuracy and fairness are not 
competing goals but complementary requirements for 
responsible educational analytics. The results provide 
actionable evidence for deploying equitable early warning 
systems in higher education. This work makes three main 
contributions: 

1. A comprehensive benchmark of six machine learning
models for student dropout prediction using balanced
and imbalanced data.

2. A detailed fairness analysis across gender, marital
status, and displacement subgroups using fairness-
aware evaluation metrics.

3. Empirical evidence that SMOTE improves both
predictive performance and subgroup equity in
educational datasets.

II. LITERATURE REVIEW

Machine learning has become an important tool in 
education, helping to predict student performance, improve 
grading systems, and reduce dropout rates. Kučak et al. [1] 
showed that predictive models can support early warning 
systems, provide continuous feedback, and help schools 
identify students who need extra support to stay in school. 
However, one major challenge is fairness. Costa-Mendes et 
al. [2] discovered that many grade prediction models for 
Portuguese students contained bias. This bias arose from 
missing or unbalanced data, which caused unfair predictions 
for some groups of students. They introduced the idea of 
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knowledge bias and suggested that fair and precise 
education systems require more complete and representative 
datasets. Recent research has focused on ways to make 
learning models fairer. Raftopoulos et al. [3] demonstrated 
that adjusting the training data through methods such as 
resampling and reweighting can improve fairness between 
different student groups without significantly affecting 
accuracy. Pham et al. [4] developed FAIREDU, a fairness-
based regression model that helps reduce bias in educational 
data while maintaining high prediction performance. 

Another approach, called adversarial debiasing and 
introduced by Zhang et al. [5], teaches the model to ignore 
sensitive information such as gender or ethnicity while still 
learning useful patterns from data. Similarly, reweighting 
methods [6] assign more importance to underrepresented or 
disadvantaged groups during training so that their outcomes 
are treated more equally. Causal fairness is another growing 
area of research. Kusner et al. [7] introduced the concept of 
counterfactual fairness, which checks whether a model’s 
prediction would remain the same if a person’s sensitive 
attribute, such as gender or social class, were different. This 
approach helps researchers understand whether a model’s 
decisions are truly fair.  

Madras et al. [8] further applied this method to education, 
showing how causal reasoning can help detect hidden bias 
in dropout prediction systems. From these studies, two main 
lessons stand out. First, machine learning can help reduce 
school dropout rates by identifying at-risk students early. 
Second, without fairness-aware design, these models can 
unintentionally reinforce existing inequalities. To achieve 
both fairness and accuracy, a combination of data-level 
techniques such as SMOTE and reweighting, together with 
fairness frameworks like FAIREDU, adversarial debiasing, 
and causal reasoning, is essential. These strategies move 
education toward more transparent, inclusive, and socially 
responsible use of artificial intelligence. 

III. METHODOLOGY

A. Dataset

The dataset used in this study was sourced from Realinho et 
al. [9] and published on Kaggle. It contains information on 
undergraduate students, including demographic, 
socioeconomic, and academic attributes relevant to 
predicting outcomes. The dataset comprises 35 columns (34 
features and one target variable). The target has three 
classes: dropout, enrolled, and graduate. As shown in Figure 
1, the distribution is imbalanced, with the majority in the 
graduate class, followed by dropout, and the smallest 
proportion in the enrolled group. 

B. Model Development

Six machine learning models-Logistic Regression, Decision 
Tree, Gradient Boosting, Random Forest, XGBoost, and 
CatBoost-were trained and evaluated to develop a reliable 
and fair predictive framework. The training process 
employed 10-fold cross-validation [10] to ensure model 
robustness and generalization capability. A standardized 
preprocessing pipeline incorporating StandardScaler was 
implemented to normalize feature distributions and maintain 
consistency across models. The model exhibiting the best 
performance was retrained on the full dataset using 
stratified sampling to preserve the proportional 
representation of each class. This procedure minimized 
sampling bias and enhanced the reliability of the final 
model. Performance evaluation was conducted at both the 
global level and across demographic subgroups defined by 
gender, marital status, and displacement status, allowing a 
comprehensive assessment of predictive accuracy and 
fairness across different population segments. 

Fig.1 Class Distribution Before SMOTE 

C. Bias Management with SMOTE

Given the class imbalance, the Synthetic Minority 
Oversampling Technique (SMOTE) [11] was applied to 
generate synthetic samples for the underrepresented classes 

(dropout and enrolled). Unlike simple duplication, SMOTE 
synthesizes new examples, producing a more balanced 
dataset (Figure 2). After resampling, models were retrained 
and re-evaluated using the same performance and fairness 
metrics as in the pre-SMOTE stage. 
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Fig.2 Class Distribution After SMOTE 

D. Evaluation Metrics

Model performance in this study was assessed using a 
combination of core classification metrics and fairness-
aware evaluations. This dual approach ensured that the 
models were not only accurate but also equitable in their 
predictions across different student groups. The core 
performance metrics included: 
1. F1-score, used as the primary criterion, representing the

harmonic mean of precision and recall [12].
2. Accuracy, which measures overall correctness, though it

is sensitive to class imbalance [12].
3. Precision, capturing tendencies toward over- or under-

labelling cases.
4. Matthews Correlation Coefficient (MCC), a robust and

balanced evaluation metric suitable for imbalanced data
[13], [14].

Fairness was evaluated through three complementary 
methods: 
1. Per-class distribution checks across the three outcomes

(dropout, enrolled, graduate).
2. Subgroup analyses based on gender, marital status, and

displacement status.
3. Comparisons of pre- and post-SMOTE performance to

measure improvements in equity.

The fairness metrics adopted in this study are primarily 
group-fairness oriented rather than individual-fairness 
based. Group fairness focuses on ensuring that model 
predictions and error rates are equitable across socially or 
demographically defined subgroups (for example, gender, 
ethnicity, or socioeconomic status). Metrics such as 
Demographic Parity Difference (ΔDP) and Equal 
Opportunity Difference (ΔEO) evaluate disparities in model 
outputs and true-positive rates between these groups [15], 
while the Matthews Correlation Coefficient (MCC) 
provides a balanced global performance measure that 

remains robust under class imbalance [13]. This orientation 
toward group fairness is especially relevant in education and 
healthcare contexts, where the aim is to promote equitable 
treatment across groups rather than identical predictions for 
every individual [16]. By comparing mean outcome rates 
across protected categories, group-based metrics uncover 
systemic disparities that aggregate metrics like accuracy or 
F1-score may conceal. The integration of performance and 
fairness metrics ensured a comprehensive evaluation 
framework. While F1-score and MCC provided reliable 
insights into predictive strength, they alone could not 
capture disparities across demographic groups. The fairness-
focused analyses, particularly subgroup evaluations and 
SMOTE comparisons, were critical in revealing hidden 
inequities and demonstrating how bias-mitigation strategies 
could lead to both improved accuracy and greater equity in 
dropout prediction. 

IV. RESULTS AND DISCUSSION

A. Model Performance Before SMOTE

Initial cross-validation across six machine learning models 
showed that CatBoost (CB) delivered the best overall 
performance, achieving an F1-score of 71.21% (Table I). 
Other ensemble models, such as Gradient Boosting (GB), 
Random Forest (RF), and XGBoost (XGB), also performed 
competitively, while Logistic Regression (LR) and Decision 
Tree (DT) lagged behind. When tested on the hold-out set, 
CatBoost achieved an accuracy of 77.86%, an F1-score of 
71.12%, a precision of 73.66%, and an MCC of 0.633 
(Table II). However, the confusion matrix (Table III) 
revealed systematic issues: dropout cases were 
underpredicted, while the graduate class was 
overrepresented. Subgroup analysis highlighted fairness 
concerns, particularly for male and displaced students, 
indicating bias in predictive outcomes. 
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TABLE I CROSS-VALIDATION RESULTS (BEFORE SMOTE) 
Model Accuracy F1-score Precision MCC 

LR 76.78% 68.23% 71.41% 0.6157 
DT 68.40% 62.51% 62.49% 0.4941 
GB 77.64% 70.48% 72.95% 0.6297 

RF 77.60% 69.85% 70.39% 0.6330 
XGB 77.57% 70.97% 72.79% 0.6292 
CB 78.18% 71.21% 73.53% 0.6388 

TABLE II CATBOOST EVALUATION (TEST SET, BEFORE SMOTE) 
Accuracy F1-score Precision MCC 
77.86% 71.12% 73.66% 0.6327 

TABLE III CONFUSION MATRIX (CATBOOST, BEFORE SMOTE) 
Actual \ Predicted Dropout (0) Enrolled (1) Graduate (2) 
Dropout (0) 332 35 60 

Enrolled (1) 50 98 90 
Graduate (2) 29 30 604 

B. Model Performance After SMOTE

After applying SMOTE to balance the dataset, the models’ 
performance became significantly more accurate. XGBoost 
(XGB) emerged as the new best performer, achieving an 
F1-score of 84.38% in cross-validation (Table IV). On the 

test set, XGBoost reported an accuracy of 83.56%, an F1-
score of 83.61%, a precision of 83.94%, and an MCC of 
0.755 (Table V). The confusion matrix (Table VI) showed 
much better alignment between actual and predicted cases, 
especially for dropout students, demonstrating that 
oversampling corrected earlier imbalances. 

TABLE IV CROSS-VALIDATION RESULTS AFTER SMOTE 
Model Accuracy F1-score Precision MCC 

LR 75.87% 75.80% 76.26% 0.6403 
DT 73.88% 73.78% 74.18% 0.6103 
GB 79.25% 79.14% 79.91% 0.6927 

RF 83.72% 83.68% 84.31% 0.7588 
XGB 84.50% 84.38% 85.33% 0.7724 
CB 83.97% 83.87% 84.86% 0.7647 

TABLE V XGBOOST EVALUATION (TEST SET, AFTER SMOTE) 
Accuracy F1-score Precision MCC 

83.56% 83.61% 83.94% 0.7545 

TABLE VI CONFUSION MATRIX (XGBOOST, AFTER SMOTE) 
Actual \ Predicted Dropout (0) Enrolled (1) Graduate (2) 

Dropout (0) 534 79 50 
Enrolled (1) 38 553 72 
Graduate (2) 17 71 575 

Figure 3 depicts a single chart comparing MCC before and 
after SMOTE across all models, with the test-set MCC 
shown as dashed reference lines. It clearly shows that most 
models improve after SMOTE, especially XGB and RF, and  

that the post-SMOTE test line sits notably higher than the 
pre-SMOTE line, indicating that the gains generalize 
beyond cross-validation. 
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Fig.3 Model Performance Before Vs After SMOTE (MCC) Cross-Validation Per Model + Test-Set Reference Lines 

C. Fairness and Bias Reduction

A comparison of subgroup performance before and after 
SMOTE revealed significant improvements in fairness. 

1. Gender Subgroups: For female students, accuracy rose
from 79.54% to 84.79%, while F1-score improved from
0.7120 to 0.8478. Importantly, dropout detection
became more accurate, reducing systematic
underestimation of female dropout risk. For male
students, accuracy increased from 74.61% to 80.52%,
and F1-score from 0.6928 to 0.7890. The fairness gap
between genders narrowed from ~2% to <6%, showing
a more equitable balance (Tables VII–VIII).

2. Displacement Subgroups: For non-displaced students,
accuracy improved from 79.76% to 85.51%, and F1-

score from 0.7334 to 0.8510. For displaced students, 
accuracy rose from 76.35% to 81.45%, while F1-score 
increased from 0.6869 to 0.8048. Dropout prediction 
for displaced students became significantly more 
accurate, reducing systematic under-detection. The F1-
score gap between displaced and non-displaced groups 
narrowed, implying more equitable predictions (Tables 
IX–X). 

3. Fairness-Oriented Analysis: Table XI summarizes
subgroup disparities across gender, marital status, and
displacement. F1-scores improved across all groups
post-SMOTE, with the largest gains for female
(+0.036), married (+0.040), and displaced (+0.039)
students. Fairness gaps narrowed notably, with the
gender gap shrinking from 0.030 to 0.010 and the
displacement gap from 0.044 to 0.023.

TABLE VII MODEL EVALUATION FOR GENDER GROUP (BEFORE SMOTE) 

Gender Accuracy F1-score Precision MCC Dropout 
(actual/pred) 

Enrolled 
(actual/pred) 

Graduate 
(actual/pred) 

Female 0.7954 0.7120 0.7478 0.6287 217/119 149/99 509/577 
Male 0.7461 0.6928 0.7060 0.5950 210/212 89/64 154/177 

TABLE VIII MODEL EVALUATION FOR GENDER GROUP (AFTER SMOTE)

Gender Accuracy F1-score Precision MCC Dropout 
(actual/pred) 

Enrolled 
(actual/pred) 

Graduate 
(actual/pred) 

Female 0.8479 0.8478 0.8583 0.7704 387/327 513/556 514/531 
Male 0.8052 0.7890 0.7865 0.6963 276/262 150/147 149/166 

TABLE IX MODEL EVALUATION FOR DISPLACED GROUP (BEFORE SMOTE) 

Displaced Accuracy F1-score Precision MCC Dropout 
(actual/pred) 

Enrolled 
(actual/pred) 

Graduate 
(actual/pred) 

No 0.7976 0.7334 0.7582 0.6749 225/219 105/71 258/298 
Yes 0.7635 0.6869 0.7129 0.5896 202/192 133/92 405/456 
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TABLE X MODEL EVALUATION FOR DISPLACED GROUP (AFTER SMOTE) 

Displaced Accuracy F1-score Precision MCC Dropout 
(actual/pred) 

Enrolled 
(actual/pred) 

Graduate 
(actual/pred) 

No 0.8551 0.8510 0.8518 0.7796 398/367 387/411 250/257 
Yes 0.8145 0.8048 0.8140 0.7150 265/222 276/292 413/440 

TABLE XI SUBGROUP FAIRNESS ANALYSIS 
Subgroup Pre-SMOTE F1 Post-SMOTE F1 Δ 

Male 0.722 0.738 +0.016
Female 0.692 0.728 +0.036

Single 0.715 0.734 +0.019
Married 0.681 0.721 +0.040
Non-displaced 0.718 0.736 +0.018

Displaced 0.674 0.713 +0.039

Figure 4 shows how each student group performed before 
and after SMOTE using the F1-score, which balances 
precision and recall. After SMOTE, every group improved. 
The largest gains were for married (+0.040), displaced 
(+0.039), and female (+0.036) students, groups that were 
weaker before. The performance gaps between paired 

groups also decreased: male vs. female went from 0.030 to 
0.010, non-displaced vs. displaced from 0.044 to 0.023, and 
single vs. married from 0.034 to 0.013. In summary, 
balancing the dataset improved the model’s fairness and 
predictive ability. 

Fig.4 Fairness and Bias Reduction Across Subgroups (F1-Score) 

The results highlight two key findings: 

1. Performance Gains: SMOTE not only improved
predictive accuracy but also shifted the best-performing
model from CatBoost (pre-SMOTE) to XGBoost (post-
SMOTE). This finding demonstrates that addressing
class imbalance is critical for enhancing dropout
prediction models.

2. Fairness Improvements: SMOTE reduced systematic
biases that previously disadvantaged male, displaced,
and married students. By improving subgroup
performance and narrowing fairness gaps, SMOTE
demonstrated its effectiveness as a data-level bias
mitigation strategy. These outcomes align with prior
work by Raftopoulos et al. [3] and Pham et al. [4],
emphasizing the role of resampling in improving equity
in educational machine learning.

V. CONCLUSION

This study evaluated several machine learning models to 
predict student dropout, considering both predictive 
accuracy and fairness across different student groups. 
Before addressing class imbalance in the data, CatBoost 
achieved the best performance (F1-score = 71.12%). After 
balancing the dataset using SMOTE, XGBoost emerged as 
the best-performing model (F1-score = 83.61%). Overall, 
data rebalancing substantially improved predictive 
performance and fairness. Performance gains were observed 
for both female and male students, and the F1-score for 
displaced students increased from 68.69% to 80.48%, 
indicating improved detection of at-risk learners within this 
vulnerable group. While CatBoost performed best prior to 
rebalancing, XGBoost outperformed all models after 
SMOTE was applied. These results demonstrate that 
SMOTE can enhance both accuracy and fairness in dropout 
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prediction. This work makes three primary contributions. 
First, it provides a comparative evaluation of six widely 
used machine learning models for student dropout 
prediction. Second, it highlights subgroup disparities 
through fairness-oriented analyses rather than relying solely 
on aggregate accuracy metrics. Third, it demonstrates that a 
straightforward data-level technique such as SMOTE can 
significantly improve predictive performance while 
reducing unfair gaps between demographic groups. Future 
work should investigate model-level fairness approaches, 
such as incorporating fairness constraints during training or 
applying adversarial debiasing techniques, and explore 
causal fairness methods to assess how predictions change 
under counterfactual variations of sensitive attributes. 
Additionally, incorporating richer socioeconomic and 
cultural factors into fairness analyses may provide a more 
comprehensive understanding of equity and support the 
development of more targeted and effective student 
intervention strategies. 
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