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Abstract - Mathematical models of nonlinear oscillators are 

used to describe a wide variety of physical and biological 

phenomena that exhibit self-sustained oscillatory behavior. 

When these oscillators are strongly driven by forces that are 

periodic in time, they often exhibit a remarkable ‘‘mode-

locking’’ that synchronizes the nonlinear oscillations to the 

driving force. Oscillation is the repetitive variation, typically in 

time, of some measure about a central value (often a point of 

equilibrium) or between two or more different states and is 

characterized by their amplitude and their phase. Their 

interactions can result in a systematic process of 

synchronization which is the adjustment of rhythms of 

oscillating objects due to an interaction and is quite distinct 

from a simple stimulus response pattern. Oscillators respond 

to stimuli at some times in their cycle and may not respond at 

others. Many important physical, chemical and biological 

systems are composed of coupled nonlinear oscillators. The 

Van der Pol equation has been used to model a number of 

biological processes such as the heartbeat, circadian rhythms, 

biochemical oscillators, and pacemaker neurons. Two such 

resistively coupled Van der Pol oscillators are analyzed and the 

phenomenon of synchronization between the states of the 

coupled oscillators is explored. Several control techniques to 

achieve synchronization are designed, implemented and 

performance evaluation carried out by simulation using 

MATLAB Software. 
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I. INTRODUCTION

An oscillator is any system that exhibits periodic behavior. 

A single oscillator traces out a simple path in phase space. 

When two or more oscillators are coupled, however the 

ranges of possible behaviors become much more complex. 

The equations governing their behavior also tend to become 

intractable. Each oscillator may be coupled only to a few 

immediate neighbors or to all the oscillators in an enormous 

community. Synchrony is the most familiar mode of 

organization for coupled oscillators. Synchronization is the 

adjustment of rhythms of oscillating objects due to an 

interaction. Multiple periodic processes with different 

natural frequencies come to acquire a common frequency 

and in some cases also a common phase as a result of their 

mutual influence [1]. The Van der Pol oscillator is 

considered by many researchers as the nodes for various 

networks which are inherently unstable at the zero 

equilibrium [2]. Van der Pol‟s equation is used as a model 

for numerous biological oscillators [3]. 

The differential equation 

 ̈  (  ) ̇  ,     ε>0  (1) 

is called the Van der Pol oscillator, where „ ‟ is the position 

coordinate, which is a dynamical variable, and „ε‟ is a scalar 

parameter which controls the nonlinearity and the strength 

of the damping. It is a model of a non-conservative system 

in which energy is added to and subtracted from the system 

in an autonomous fashion, resulting in a periodic motion 

called a limit cycle. It can be seen that the sign of the 

damping term,  (  ) ̇  changes, depending upon 

whether | | is larger or smaller than unity. Numerical 

integration of equation (1) shows that every initial 

condition, (except  ̇  ) approaches a unique periodic 

motion. 

The nature of this unique periodic motion (limit cycle) is 

dependent on the value of „ε‟. For small values of „ε‟ the 

motion is nearly sinusoidal, whereas for large values it is a 

relaxation oscillation. In a nonlinear system such as the Van 

der Pol oscillator, the stability is very much dependent on 

the input and also the initial state. Further, the nonlinear 

systems may exhibit limit cycles which are self-sustained 

oscillations of fixed frequency and amplitude. Once the 

system trajectories converge to a limit cycle, it will continue 

to remain in the closed trajectory in the state space 

identified as limit cycles. A limit cycle represents a steady 

state oscillation, to which or from which all trajectories 

nearby will converge or diverge. The limit cycles describe 

the amplitude and period of a self-sustained oscillation and 

they are periodic motions exhibited only by nonlinear, non-

conservative systems. A limit cycle is stable if trajectories 

near the limit cycle, originating from outside or inside, 

converge to that limit cycle [4,5]. 

II. VALIDATION FOR THE NON-LINEARITY

To validate for the nonlinearity of the Van der Pol 

oscillator, consider equation (1). 

 ̈  (    ) ̇                                 ( ) 

Let 

 (   ) 

 ̇   ̇  (  ) 

 ̈   ̈   ̇    (  )̇  

Substituting the above conditionswe get, 

  ̇  (     )  (   ) 
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Thus, 

                      ̇                  (   ) 

  ̇   (     )                         (   ) 
 

The Jacobian Matrix which is 

A=[

   

   

   

   
   

   

   

   

] 

can be now obtained as, 
 

A=[
  

             
]                              (   ) 

 

A. Singular Points: A system represented by an equation, 

 ̇   ( ), is an autonomous system. For such a system, 

consider the points in the phase space at which the derivative 

of all the state variables are zeros, such point are called as 

singular points. If the system is placed at such a point, it will 

continue to lie there if left undisturbed (as the derivative of 

all the phase variable being zero, the system states remain 

unchanged) [5]. 
 

Let       ̇   ̇                                        (   ) 
 

Substituting in equations 1.5 and 1.6, we get 

 1= 2=0 

So, the singular points for this system are (0, 0).  

For finding the poles, |    |    

 

|[
  
  

]  [
  

             
]|    

 

where  1 = 0,  2 = 0, ε = 0.1. 

 

The equation obtained is,  

  −0.1λ+1=0                                         (1.9) 

and the λ value is calculated as, 
 

λ =0.05±0.99j  

The poles    and     are complex conjugates and they lie in 

the left-half of the plane, according to the nature of this 

response the system exhibits a stable focus. 

 

B. Limit Cycle: A system to approach a periodic behavior, 

which will thus, appears a closed curve in phase plane is 

called a Limit Cycle. The oscillatory circuit behavior is 

related from a mathematical point of view to the so called 

limit cycles. The limit cycle describes the oscillations of 

nonlinear system and is called stable if trajectories near the 

limit cycle, originating from outside or inside, converge to 

that limit cycle [5, 6, 7]. A limit cycle in a nonlinear system 

describes the amplitude and period of a self-sustained 

oscillation. Limit cycles are oscillators of the response (or 

output) of nonlinear system with fixed amplitude and 

frequency. The limit cycle representation in phase plane has 

been carried out previously for varied initial conditions and 

the results inferred for the existence of a stable limit cycle 

exhibiting a sustained oscillation with constant amplitude 

[8].  

III. COUPLED VAN DER POL OSCILLATORS 
 

Two simulated Van der Pol oscillators (VDP) are coupled 

by means of resistive coupling and the response of the 

coupled pair for various coupling strengths has been 

analyzed earlier [8]. The variation in the parameter „ ‟ of 

the oscillator model which is the position coordinate, and 

also a dynamical variable is now carried out with    = 1 and 

   = 0.8 (     ) and the simulation result presented in 

Fig.1. Similarly for the position coordinates    = 1 and     

   = 1.2 (     ) the simulation result is presented in 

Fig.2. The coupling conductance of GC=1/100 S (Siemens) 

is considered throughout the analysis as it yields a small 

phase shift between the states of the coupled pair of 

oscillators [8]. 

 

 
 

Fig.1 Response of position coordinate „ ‟ for       

 

 
 

Fig.2 Response of position coordinate „ ‟ for       
 

From the above two responses it is apparent that for any 

variations in the position coordinate „ ‟, the state of the 

coupled oscillators fail to be in synchrony with substantial 

amplitude and phase differences. To establish synchrony 

between the coupled oscillators both in amplitude and 

phase, several control techniques are proposed, the same 

designed and implemented. 

45 AJEAT Vol.5 No.2 July-December 2016

Control Techniques for Synchronizing the States of Two Coupled Van der Pol Oscillators



 

IV. CONTROL TECHNIQUES 

 

A. Proportional Control: A Proportional Control scheme is 

implemented with a position coordinate „ ‟ as 1 effected 

equally for both the coupled identical Van der Pol 

oscillators (VDP) for which, the state of the oscillators 

attain synchrony as shown in Fig.3. The controller 

parameters are estimated from the cost function plot where 

the value of the controller parameters that yields the lowest 

ISE (Integral Square Error) value is selected [8]. 

 

 
 

Fig.3 Coupled VDP oscillators in synchrony with P Control for  1= 2 

 

A further decrease made in the position coordinate  2 of the 

second oscillator, while maintaining  1 as before ( 1> 2), 

also synchronizes the coupled pair with P control, as shown 

in the Fig.4. Similarly for  1< 2 the P control when 

implemented eventually maintain synchrony between the 

states of the two coupled oscillators as shown in Fig.5. 

 

 
 

Fig.4 Coupled VDP oscillators in synchrony with P Control for  1> 2 
 

For performance evaluation, in addition to ISE (Integral 

Square Error), the synchronization time (both in amplitude 

and phase) along with steady state error are considered and 

the same is tabulated for all variations effected throughout 

and are presented at the end in Tables I, II and III. 

 
 

Fig.5 Coupled VDP oscillators in synchrony with P Control for  1< 2 

 

B. Proportional+ Integral Control: With identical position 

coordinate „ ‟ maintained as before, a PI control 

implemented is seen to synchronize the two coupled 

oscillators and the simulated response is presented in Fig.6. 

As before the controller parameters are estimated from the 

cost function plot where the value of the controller 

parameters that yields the lowest ISE value is selected [8]. 

The same procedure is repeated for 

                      1> 2 and also for  1< 2. The 

simulated responses where the states of the coupled VDP 

oscillators are eventually in perfect synchrony in both the 

phase and amplitude are depicted in Fig.7 and Fig.8 

respectively. 
 

 
 

Fig.6 Coupled VDP oscillators in synchrony with PI Control for  1= 2 
 

 
Fig.7 Coupled VDP oscillators in synchrony with PI Control for  1> 2 

46AJEAT Vol.5 No.2 July-December 2016

T. S. Murugesh and M. Senthilkumar



 

 
 

Fig.8 Coupled VDP oscillators in synchrony with PI Control for  1< 2 

 

C. Proportional+Derivative Control: With the same 

position coordinate „ ‟ common to both the coupled 

oscillators as before, a PD control is implemented which 

establishes synchrony and the simulated response is 

depicted in Fig.9. The controller parameters are estimated 

from the cost function plot with the procedure repeated for 

position coordinates  1> 2 and for  1< 2 [8]. The 

simulated responses are depicted in Fig.10 and Fig.11 

correspondingly. In all the responses the states of the 

coupled VDP oscillators are observed to be in perfect 

synchrony with respect to both phase and amplitude 

 

 
 

Fig.9 Coupled VDP oscillators in synchrony with PD Control for  1= 2 

 

 
 

Fig.10 Coupled VDP oscillators in synchrony with PD Control for  1> 2 

 
 

Fig.11 Coupled VDP oscillators in synchrony with PD Control for  1< 2 

 

D. Proportional+Integral+Derivative Control: The cost 

function plot is again made use of to find the controller 

parameters for PID scheme [8]. The position coordinate „ ‟ 

is maintained the same for both the coupled oscillators and 

PID control is implemented which synchronizes the states 

of the two coupled oscillators. The simulated response is 

given in Fig.12. The procedure is repeated for two 

conditions where the position coordinates are  1> 2 and 

 1< 2. The simulated responses are provided in Fig.13 and 

Fig.14. In all the responses the states of the coupled 

oscillators are in perfect synchrony. 

 

 
Fig.12 Coupled VDP oscillators in synchrony with PID Control for  1= 2 

 

 
Fig.13 Coupled VDP oscillators in synchrony with PID Control for  1> 2 
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Fig.14 Coupled VDP oscillators in synchrony with PID Control for  1< 2 

 

E. Fuzzy Logic Control: A Mamdani type Fuzzy Logic 

Control (FLC) is designed with triangular membership 

function with the appropriate rule base as seen in the rule 

viewer of Fig.15 [8]. 

 

 
 

Fig.15 Rule viewer in the implemented Fuzzy Logic Control 

 

The FLC is implemented to maintain synchrony between 

the states of the coupled oscillators for identical position 

coordinate „ ‟ as shown in Fig.16.  

 

 
 

Fig.16 Coupled VDP oscillators in synchrony with  

Fuzzy Logic Control for  1= 2 

The simulation is repeated for two more conditions as 

before where the position coordinates are maintained such 

that  1> 2 and  1< 2. The simulated responses are 

provided in Fig.17 and Fig.18. All the simulated responses 

are seen to possess perfect synchrony among the states of 

the coupled VDP oscillators. 

 

 
Fig.17 Coupled VDP oscillators in synchrony with  

Fuzzy Logic Control for  1> 2 
 

 
Fig.18 Coupled VDP oscillators in synchrony with  

Fuzzy Logic Control for  1< 2 

 

V. PERFORMANCE EVALUATION 

 

The problem of designing the 'best' controller can be 

formulated as the type of the controller and the values of its 

adjusted parameters so as to minimize the ISE (Integral of 

the Square Error) of the system's response [9]. To strongly 

suppress large errors, ISE is better because the errors are 

squared and thus contribute more to the value of the integral 

and hence the same is opted in this work where, 

ISE = 
0

2 )( dttE  

and E(t) is the error. In addition to ISE, steady state errors 

as well as the synchronization time (both in amplitude and 

phase) are considered and the same tabulated for all 

variations effected. 

 

The notations „X‟ and „V‟ in Tables I, II and III are arrived 

from equation (1) which are considered as the first and 

second state derivatives respectively. 
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TABLE I POSITION COORDINATE  1= 2 
 

S.No. 
Control 

Technique 
 1  2 GC(S) ISE Synchronization time (Seconds) 

1 P 1 1 1/100 0.00099 
X=65 

V=60 

2 PI 1 1 1/100 0.001007 
X=65 

V=65 

3 PD 1 1 1/100 0.00001926 
X=65 

V=50 

4 PID 1 1 1/100 0.00001542 
X=65 

V=65 

5 FUZZY 1 1 1/100 0.00000465 
X=35 

V=40 

 
TABLE II POSITION COORDINATE  1> 2 

 

S.No. 
Control 

Technique 
 1  2 GC(S) ISE Synchronization time (Seconds) 

1 P 1 0.8 1/100 0.5477 
X=65 

V=60 

2 PI 1 0.8 1/100 0.6381 
X=65 

V=65 

3 PD 1 0.8 1/100 0.3831 
X=65 

V=50 

4 PID 1 0.8 1/100 0.4313 
X=65 

V=65 

5 FUZZY 1 0.8 1/100 0.0560 
X=40 

V=45 

 
TABLE III POSITION COORDINATE  1< 2 

 

S.No. 
Control 

Technique 
 1  2 GC(S) ISE Synchronization time (Seconds) 

1 P 1 1.2 1/100 0.3895 
X=45 

V=50 

2 PI 1 1.2 1/100 0.4454 
X=50 

V=50 

3 PD 1 1.2 1/100 0.2684 
X=40 

V=45 

4 PID 1 1.2 1/100 0.2963 
X=40 

V=45 

5 FUZZY 1 1.2 1/100 0.04806 
X=30 

V=35 

 

VI. RESULTS AND DISCUSSION 
 

The Van der pol oscillator has been validated for its 

Nonlinearity and the same realized using simulink tool box 

of MATLAB software. It is inferred from the simulation 

studies that all the proposed control techniques does yield 

zero steady state error. From the performance evaluation 

tables presented above for all the 3 cases where the position 

coordinates of the states of the coupled oscillators are kept 

at  1= 2,  1> 2 and  1< 2, the Fuzzy Logic Control 

exhibits better performance. FLC possess the lowest ISE for 

all the three cases, exhibits faster response, consumes lesser 

time to attain synchronization among the states of the 

coupled van der pol oscillators both in amplitude and phase 
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well ahead of the rest.The simulation results quantify that 

the proposed FLC control technique can better quickly aid 

the coupled VDP oscillators to undergo synchronization. 

 

REFERENCES 

 
[1] H.G. Schuster and P. Wagner, “Mutual entrainment of two limit cycle 

oscillators with time delayed coupling”, Progress of Theoretical 
Physics, Vol. 81, No.5, pp. 939-945, 1989. 

[2] K. Hu and K.W. Chung, “On the stability analysis of a pair of Van 

der Pol oscillators with delayed self-connection, position and velocity 
couplings”, AIP Advances, Vol. 3, No.11, pp. 112118/18, 2013. 

[3] A.M. Santos, S.R. Lopes and R.L. Viana, “Rhythm Synchronization 

and Chaotic Modulation of Coupled Van der Pol Oscillators in a 
Model for the Heartbeat”, Physica A: Statistical Mechanics and its 

Applications, Vol. 338, No. 3, pp. 335-355, 2004. 

[4] Chau Ngugen, Van der Pol Oscillators Synchronization: Method and 

Applications, Yale University, Department of Electrical Engineering, 
Prentice-Hall, New Jersey, 2009. 

[5] Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson, 

2009. 
[6] I.J.Nagrath and M.Gopal, Control Systems Engineering, 5th edition, 

New Age Publishers, 2009. 

[7] C.W. Wu and L.O. Chua, “A unified framework for synchronization 
and control of dynamical systems”, Int. J. Bifurc. Chaos Appl. Sci. 

Eng,Vol.4, pp. 979-998, 1994. 

[8] R.Narmatha, T.S.Murugesh and J.Krishnan, “Design of an Intelligent 
Control Scheme for Synchronizing Two Coupled Van Der Pol 

Oscillators”, International Journal of ChemTech Research, Vol.6, 

No.12, pp. 5033-5048, Oct.2014. 
[9] G.Stephanopoulos, Chemical Process Control, Englewood Cliffs, 

New Jersey: Prentice-Hall, 1984. 

 

50AJEAT Vol.5 No.2 July-December 2016

T. S. Murugesh and M. Senthilkumar




